from __future__ import annotations

import itertools
import warnings
from abc import ABC, abstractmethod
from collections import defaultdict, namedtuple
from contextlib import contextmanager
from typing import List, Optional, Tuple, Union

import magicgui as mgui
import numpy as np

from ...utils._dask_utils import configure_dask
from ...utils._magicgui import add_layer_to_viewer, get_layers
from ...utils.events import EmitterGroup, Event
from ...utils.events.event import WarningEmitter
from ...utils.geometry import (
    find_front_back_face,
    intersect_line_with_axis_aligned_bounding_box_3d,
)
from ...utils.key_bindings import KeymapProvider
from ...utils.misc import ROOT_DIR
from ...utils.mouse_bindings import MousemapProvider
from ...utils.naming import magic_name
from ...utils.status_messages import generate_layer_status
from ...utils.transforms import Affine, CompositeAffine, TransformChain
from ...utils.translations import trans
from .._source import current_source
from ..utils.layer_utils import (
    coerce_affine,
    compute_multiscale_level_and_corners,
    convert_to_uint8,
    dims_displayed_world_to_layer,
)
from ..utils.plane import ClippingPlane, ClippingPlaneList
from ._base_constants import Blending

Extent = namedtuple('Extent', 'data world step')


def no_op(layer: Layer, event: Event) -> None:
    """
    A convenient no-op event for the layer mouse binding.

    This makes it easier to handle many cases by inserting this as
    as place holder

    Parameters
    ----------
    layer : Layer
        Current layer on which this will be bound as a callback
    event : Event
        event that triggered this mouse callback.

    Returns
    -------
    None

    """
    return None


[docs]@mgui.register_type(choices=get_layers, return_callback=add_layer_to_viewer) class Layer(KeymapProvider, MousemapProvider, ABC): """Base layer class. Parameters ---------- name : str Name of the layer. metadata : dict Layer metadata. scale : tuple of float Scale factors for the layer. translate : tuple of float Translation values for the layer. rotate : float, 3-tuple of float, or n-D array. If a float convert into a 2D rotation matrix using that value as an angle. If 3-tuple convert into a 3D rotation matrix, using a yaw, pitch, roll convention. Otherwise assume an nD rotation. Angles are assumed to be in degrees. They can be converted from radians with np.degrees if needed. shear : 1-D array or n-D array Either a vector of upper triangular values, or an nD shear matrix with ones along the main diagonal. affine : n-D array or napari.utils.transforms.Affine (N+1, N+1) affine transformation matrix in homogeneous coordinates. The first (N, N) entries correspond to a linear transform and the final column is a length N translation vector and a 1 or a napari `Affine` transform object. Applied as an extra transform on top of the provided scale, rotate, and shear values. opacity : float Opacity of the layer visual, between 0.0 and 1.0. blending : str One of a list of preset blending modes that determines how RGB and alpha values of the layer visual get mixed. Allowed values are {'opaque', 'translucent', 'translucent_no_depth', and 'additive'}. visible : bool Whether the layer visual is currently being displayed. multiscale : bool Whether the data is multiscale or not. Multiscale data is represented by a list of data objects and should go from largest to smallest. Attributes ---------- name : str Unique name of the layer. opacity : float Opacity of the layer visual, between 0.0 and 1.0. visible : bool Whether the layer visual is currently being displayed. blending : Blending Determines how RGB and alpha values get mixed. Blending.OPAQUE Allows for only the top layer to be visible and corresponds to depth_test=True, cull_face=False, blend=False. Blending.TRANSLUCENT Allows for multiple layers to be blended with different opacity and corresponds to depth_test=True, cull_face=False, blend=True, blend_func=('src_alpha', 'one_minus_src_alpha'). Blending.TRANSLUCENT_NO_DEPTH Allows for multiple layers to be blended with different opacity, but no depth testing is performed. and corresponds to depth_test=False, cull_face=False, blend=True, blend_func=('src_alpha', 'one_minus_src_alpha'). Blending.ADDITIVE Allows for multiple layers to be blended together with different colors and opacity. Useful for creating overlays. It corresponds to depth_test=False, cull_face=False, blend=True, blend_func=('src_alpha', 'one'). scale : tuple of float Scale factors for the layer. translate : tuple of float Translation values for the layer. rotate : float, 3-tuple of float, or n-D array. If a float convert into a 2D rotation matrix using that value as an angle. If 3-tuple convert into a 3D rotation matrix, using a yaw, pitch, roll convention. Otherwise assume an nD rotation. Angles are assumed to be in degrees. They can be converted from radians with np.degrees if needed. shear : 1-D array or n-D array Either a vector of upper triangular values, or an nD shear matrix with ones along the main diagonal. affine : n-D array or napari.utils.transforms.Affine (N+1, N+1) affine transformation matrix in homogeneous coordinates. The first (N, N) entries correspond to a linear transform and the final column is a length N translation vector and a 1 or a napari `Affine` transform object. Applied as an extra transform on top of the provided scale, rotate, and shear values. multiscale : bool Whether the data is multiscale or not. Multiscale data is represented by a list of data objects and should go from largest to smallest. cache : bool Whether slices of out-of-core datasets should be cached upon retrieval. Currently, this only applies to dask arrays. z_index : int Depth of the layer visual relative to other visuals in the scenecanvas. coordinates : tuple of float Cursor position in data coordinates. corner_pixels : array Coordinates of the top-left and bottom-right canvas pixels in the data coordinates of each layer. For multiscale data the coordinates are in the space of the currently viewed data level, not the highest resolution level. position : tuple Cursor position in world coordinates. ndim : int Dimensionality of the layer. thumbnail : (N, M, 4) array Array of thumbnail data for the layer. status : str Displayed in status bar bottom left. help : str Displayed in status bar bottom right. interactive : bool Determine if canvas pan/zoom interactivity is enabled. cursor : str String identifying which cursor displayed over canvas. cursor_size : int | None Size of cursor if custom. None yields default size scale_factor : float Conversion factor from canvas coordinates to image coordinates, which depends on the current zoom level. Notes ----- Must define the following: * `_extent_data`: property * `data` property (setter & getter) May define the following: * `_set_view_slice()`: called to set currently viewed slice * `_basename()`: base/default name of the layer """ def __init__( self, data, ndim, *, name=None, metadata=None, scale=None, translate=None, rotate=None, shear=None, affine=None, opacity=1, blending='translucent', visible=True, multiscale=False, cache=True, # this should move to future "data source" object. experimental_clipping_planes=None, ): super().__init__() if name is None and data is not None: name = magic_name(data, path_prefix=ROOT_DIR) self._source = current_source() self.dask_optimized_slicing = configure_dask(data, cache) self._metadata = dict(metadata or {}) self._opacity = opacity self._blending = Blending(blending) self._visible = visible self._freeze = False self._status = 'Ready' self._help = '' self._cursor = 'standard' self._cursor_size = 1 self._interactive = True self._value = None self.scale_factor = 1 self.multiscale = multiscale self._experimental_clipping_planes = ClippingPlaneList() self._ndim = ndim self._ndisplay = 2 self._dims_order = list(range(ndim)) # Create a transform chain consisting of four transforms: # 1. `tile2data`: An initial transform only needed to display tiles # of an image. It maps pixels of the tile into the coordinate space # of the full resolution data and can usually be represented by a # scale factor and a translation. A common use case is viewing part # of lower resolution level of a multiscale image, another is using a # downsampled version of an image when the full image size is larger # than the maximum allowed texture size of your graphics card. # 2. `data2physical`: The main transform mapping data to a world-like # physical coordinate that may also encode acquisition parameters or # sample spacing. # 3. `physical2world`: An extra transform applied in world-coordinates that # typically aligns this layer with another. # 4. `world2grid`: An additional transform mapping world-coordinates # into a grid for looking at layers side-by-side. if scale is None: scale = [1] * ndim if translate is None: translate = [0] * ndim self._transforms = TransformChain( [ Affine(np.ones(ndim), np.zeros(ndim), name='tile2data'), CompositeAffine( scale, translate, rotate=rotate, shear=shear, ndim=ndim, name='data2physical', ), coerce_affine(affine, ndim=ndim, name='physical2world'), Affine(np.ones(ndim), np.zeros(ndim), name='world2grid'), ] ) self._position = (0,) * ndim self._dims_point = [0] * ndim self.corner_pixels = np.zeros((2, ndim), dtype=int) self._editable = True self._thumbnail_shape = (32, 32, 4) self._thumbnail = np.zeros(self._thumbnail_shape, dtype=np.uint8) self._update_properties = True self._name = '' self.experimental_clipping_planes = experimental_clipping_planes self.events = EmitterGroup( source=self, auto_connect=False, refresh=Event, set_data=Event, blending=Event, opacity=Event, visible=Event, scale=Event, translate=Event, rotate=Event, shear=Event, affine=Event, data=Event, name=Event, thumbnail=Event, status=Event, help=Event, interactive=Event, cursor=Event, cursor_size=Event, editable=Event, loaded=Event, _ndisplay=Event, select=WarningEmitter( trans._( "'layer.events.select' is deprecated and will be removed in napari v0.4.9, use 'viewer.layers.selection.events.changed' instead, and inspect the 'added' attribute on the event.", deferred=True, ), type='select', ), deselect=WarningEmitter( trans._( "'layer.events.deselect' is deprecated and will be removed in napari v0.4.9, use 'viewer.layers.selection.events.changed' instead, and inspect the 'removed' attribute on the event.", deferred=True, ), type='deselect', ), ) self.name = name def __str__(self): """Return self.name.""" return self.name def __repr__(self): cls = type(self) return f"<{cls.__name__} layer {repr(self.name)} at {hex(id(self))}>" def _mode_setter_helper(self, mode, Modeclass): """ Helper to manage callbacks in multiple layers Parameters ---------- mode : Modeclass | str New mode for the current layer. Modeclass : Enum Enum for the current class representing the modes it can takes, this is usually specific on each subclass. Returns ------- tuple (new Mode, mode changed) """ mode = Modeclass(mode) assert mode is not None if not self.editable: mode = Modeclass.PAN_ZOOM if mode == self._mode: return mode, False if mode.value not in Modeclass.keys(): raise ValueError( trans._( "Mode not recognized: {mode}", deferred=True, mode=mode ) ) old_mode = self._mode self._mode = mode for callback_list, mode_dict in [ (self.mouse_drag_callbacks, self._drag_modes), (self.mouse_move_callbacks, self._move_modes), ( self.mouse_double_click_callbacks, getattr( self, '_double_click_modes', defaultdict(lambda: no_op) ), ), ]: if mode_dict[old_mode] in callback_list: callback_list.remove(mode_dict[old_mode]) callback_list.append(mode_dict[mode]) self.cursor = self._cursor_modes[mode] if mode == Modeclass.PAN_ZOOM: self.interactive = True else: self.interactive = False return mode, True @classmethod def _basename(cls): return f'{cls.__name__}' @property def name(self): """str: Unique name of the layer.""" return self._name @name.setter def name(self, name): if name == self.name: return if not name: name = self._basename() self._name = name self.events.name() @property def metadata(self) -> dict: """Key/value map for user-stored data.""" return self._metadata @metadata.setter def metadata(self, value: dict) -> None: self._metadata.clear() self._metadata.update(value) @property def source(self): return self._source @property def loaded(self) -> bool: """Return True if this layer is fully loaded in memory. This base class says that layers are permanently in the loaded state. Derived classes that do asynchronous loading can override this. """ return True @property def opacity(self): """float: Opacity value between 0.0 and 1.0.""" return self._opacity @opacity.setter def opacity(self, opacity): if not 0.0 <= opacity <= 1.0: raise ValueError( trans._( 'opacity must be between 0.0 and 1.0; got {opacity}', deferred=True, opacity=opacity, ) ) self._opacity = opacity self._update_thumbnail() self.events.opacity() @property def blending(self): """Blending mode: Determines how RGB and alpha values get mixed. Blending.OPAQUE Allows for only the top layer to be visible and corresponds to depth_test=True, cull_face=False, blend=False. Blending.TRANSLUCENT Allows for multiple layers to be blended with different opacity and corresponds to depth_test=True, cull_face=False, blend=True, blend_func=('src_alpha', 'one_minus_src_alpha'). Blending.ADDITIVE Allows for multiple layers to be blended together with different colors and opacity. Useful for creating overlays. It corresponds to depth_test=False, cull_face=False, blend=True, blend_func=('src_alpha', 'one'). """ return str(self._blending) @blending.setter def blending(self, blending): self._blending = Blending(blending) self.events.blending() @property def visible(self): """bool: Whether the visual is currently being displayed.""" return self._visible @visible.setter def visible(self, visibility): self._visible = visibility self.refresh() self.events.visible() if self.visible: self.editable = self._set_editable() else: self.editable = False @property def editable(self): """bool: Whether the current layer data is editable from the viewer.""" return self._editable @editable.setter def editable(self, editable): if self._editable == editable: return self._editable = editable self._set_editable(editable=editable) self.events.editable() @property def scale(self): """list: Anisotropy factors to scale data into world coordinates.""" return self._transforms['data2physical'].scale @scale.setter def scale(self, scale): self._transforms['data2physical'].scale = np.array(scale) self._update_dims() self.events.scale() @property def translate(self): """list: Factors to shift the layer by in units of world coordinates.""" return self._transforms['data2physical'].translate @translate.setter def translate(self, translate): self._transforms['data2physical'].translate = np.array(translate) self._update_dims() self.events.translate() @property def rotate(self): """array: Rotation matrix in world coordinates.""" return self._transforms['data2physical'].rotate @rotate.setter def rotate(self, rotate): self._transforms['data2physical'].rotate = rotate self._update_dims() self.events.rotate() @property def shear(self): """array: Shear matrix in world coordinates.""" return self._transforms['data2physical'].shear @shear.setter def shear(self, shear): self._transforms['data2physical'].shear = shear self._update_dims() self.events.shear() @property def affine(self): """napari.utils.transforms.Affine: Extra affine transform to go from physical to world coordinates.""" return self._transforms['physical2world'] @affine.setter def affine(self, affine): # Assignment by transform name is not supported by TransformChain and # EventedList, so use the integer index instead. For more details, see: # https://github.com/napari/napari/issues/3058 self._transforms[2] = coerce_affine( affine, ndim=self.ndim, name='physical2world' ) self._update_dims() self.events.affine() @property def translate_grid(self): """list: Factors to shift the layer by.""" return self._transforms['world2grid'].translate @translate_grid.setter def translate_grid(self, translate_grid): if np.all(self.translate_grid == translate_grid): return self._transforms['world2grid'].translate = np.array(translate_grid) self.events.translate() @property def _is_moving(self): return self._private_is_moving @_is_moving.setter def _is_moving(self, value): assert value in (True, False) if value: assert self._moving_coordinates is not None self._private_is_moving = value @property def _dims_displayed(self): """To be removed displayed dimensions.""" # Ultimately we aim to remove all slicing information from the layer # itself so that layers can be sliced in different ways for multiple # canvas. See https://github.com/napari/napari/pull/1919#issuecomment-738585093 # for additional discussion. return self._dims_order[-self._ndisplay :] @property def _dims_not_displayed(self): """To be removed not displayed dimensions.""" # Ultimately we aim to remove all slicing information from the layer # itself so that layers can be sliced in different ways for multiple # canvas. See https://github.com/napari/napari/pull/1919#issuecomment-738585093 # for additional discussion. return self._dims_order[: -self._ndisplay] @property def _dims_displayed_order(self): """To be removed order of displayed dimensions.""" # Ultimately we aim to remove all slicing information from the layer # itself so that layers can be sliced in different ways for multiple # canvas. See https://github.com/napari/napari/pull/1919#issuecomment-738585093 # for additional discussion. order = np.array(self._dims_displayed) order[np.argsort(order)] = list(range(len(order))) return tuple(order) def _update_dims(self, event=None): """Updates dims model, which is useful after data has been changed.""" ndim = self._get_ndim() old_ndim = self._ndim if old_ndim > ndim: keep_axes = range(old_ndim - ndim, old_ndim) self._transforms = self._transforms.set_slice(keep_axes) self._dims_point = self._dims_point[-ndim:] arr = np.array(self._dims_order[-ndim:]) arr[np.argsort(arr)] = range(len(arr)) self._dims_order = arr.tolist() self._position = self._position[-ndim:] elif old_ndim < ndim: new_axes = range(ndim - old_ndim) self._transforms = self._transforms.expand_dims(new_axes) self._dims_point = [0] * (ndim - old_ndim) + self._dims_point self._dims_order = list(range(ndim - old_ndim)) + [ o + ndim - old_ndim for o in self._dims_order ] self._position = (0,) * (ndim - old_ndim) + self._position self._ndim = ndim self.refresh() @property @abstractmethod def data(self): # user writes own docstring raise NotImplementedError() @data.setter @abstractmethod def data(self, data): raise NotImplementedError() @property @abstractmethod def _extent_data(self) -> np.ndarray: """Extent of layer in data coordinates. Returns ------- extent_data : array, shape (2, D) """ raise NotImplementedError() @property def _extent_world(self) -> np.ndarray: """Range of layer in world coordinates. Returns ------- extent_world : array, shape (2, D) """ # Get full nD bounding box return self._get_extent_world(self._extent_data) def _get_extent_world(self, data_extent): """Range of layer in world coordinates base on provided data_extent Returns ------- extent_world : array, shape (2, D) """ D = data_extent.shape[1] full_data_extent = np.array(np.meshgrid(*data_extent.T)).T.reshape( -1, D ) full_world_extent = self._data_to_world(full_data_extent) world_extent = np.array( [ np.min(full_world_extent, axis=0), np.max(full_world_extent, axis=0), ] ) return world_extent @property def extent(self) -> Extent: """Extent of layer in data and world coordinates.""" data = self._extent_data return Extent( data=data, world=self._get_extent_world(data), step=abs(self._data_to_world.scale), ) @property def _slice_indices(self): """(D, ) array: Slice indices in data coordinates.""" inv_transform = self._data_to_world.inverse if self.ndim > self._ndisplay: # Subspace spanned by non displayed dimensions non_displayed_subspace = np.zeros(self.ndim) for d in self._dims_not_displayed: non_displayed_subspace[d] = 1 # Map subspace through inverse transform, ignoring translation mapped_nd_subspace = inv_transform( non_displayed_subspace ) - inv_transform(np.zeros(self.ndim)) # Look at displayed subspace displayed_mapped_subspace = [ mapped_nd_subspace[d] for d in self._dims_displayed ] # Check that displayed subspace is null if not np.allclose(displayed_mapped_subspace, 0): warnings.warn( trans._( 'Non-orthogonal slicing is being requested, but is not fully supported. Data is displayed without applying an out-of-slice rotation or shear component.', deferred=True, ), category=UserWarning, ) slice_inv_transform = inv_transform.set_slice(self._dims_not_displayed) world_pts = [self._dims_point[ax] for ax in self._dims_not_displayed] data_pts = slice_inv_transform(world_pts) if not hasattr(self, "_round_index") or self._round_index: # A round is taken to convert these values to slicing integers data_pts = np.round(data_pts).astype(int) indices = [slice(None)] * self.ndim for i, ax in enumerate(self._dims_not_displayed): indices[ax] = data_pts[i] return tuple(indices) @abstractmethod def _get_ndim(self): raise NotImplementedError() def _set_editable(self, editable=None): if editable is None: self.editable = True def _get_base_state(self): """Get dictionary of attributes on base layer. Returns ------- state : dict Dictionary of attributes on base layer. """ base_dict = { 'name': self.name, 'metadata': self.metadata, 'scale': list(self.scale), 'translate': list(self.translate), 'rotate': [list(r) for r in self.rotate], 'shear': list(self.shear), 'opacity': self.opacity, 'blending': self.blending, 'visible': self.visible, 'experimental_clipping_planes': [ plane.dict() for plane in self.experimental_clipping_planes ], } return base_dict @abstractmethod def _get_state(self): raise NotImplementedError() @property def _type_string(self): return self.__class__.__name__.lower() def as_layer_data_tuple(self): state = self._get_state() state.pop('data', None) return self.data, state, self._type_string @property def thumbnail(self): """array: Integer array of thumbnail for the layer""" return self._thumbnail @thumbnail.setter def thumbnail(self, thumbnail): if 0 in thumbnail.shape: thumbnail = np.zeros(self._thumbnail_shape, dtype=np.uint8) if thumbnail.dtype != np.uint8: with warnings.catch_warnings(): warnings.simplefilter("ignore") thumbnail = convert_to_uint8(thumbnail) padding_needed = np.subtract(self._thumbnail_shape, thumbnail.shape) pad_amounts = [(p // 2, (p + 1) // 2) for p in padding_needed] thumbnail = np.pad(thumbnail, pad_amounts, mode='constant') # blend thumbnail with opaque black background background = np.zeros(self._thumbnail_shape, dtype=np.uint8) background[..., 3] = 255 f_dest = thumbnail[..., 3][..., None] / 255 f_source = 1 - f_dest thumbnail = thumbnail * f_dest + background * f_source self._thumbnail = thumbnail.astype(np.uint8) self.events.thumbnail() @property def ndim(self): """int: Number of dimensions in the data.""" return self._ndim @property def help(self): """str: displayed in status bar bottom right.""" return self._help @help.setter def help(self, help): if help == self.help: return self.events.help(help=help) self._help = help @property def interactive(self): """bool: Determine if canvas pan/zoom interactivity is enabled.""" return self._interactive @interactive.setter def interactive(self, interactive): if interactive == self.interactive: return self.events.interactive(interactive=interactive) self._interactive = interactive @property def cursor(self): """str: String identifying cursor displayed over canvas.""" return self._cursor @cursor.setter def cursor(self, cursor): if cursor == self.cursor: return self.events.cursor(cursor=cursor) self._cursor = cursor @property def cursor_size(self): """int | None: Size of cursor if custom. None yields default size.""" return self._cursor_size @cursor_size.setter def cursor_size(self, cursor_size): if cursor_size == self.cursor_size: return self.events.cursor_size(cursor_size=cursor_size) self._cursor_size = cursor_size @property def experimental_clipping_planes(self): return self._experimental_clipping_planes @experimental_clipping_planes.setter def experimental_clipping_planes( self, value: Union[ dict, ClippingPlane, List[Union[ClippingPlane, dict]], ClippingPlaneList, ], ): self._experimental_clipping_planes.clear() if value is None: return if isinstance(value, (ClippingPlane, dict)): value = [value] for new_plane in value: plane = ClippingPlane() plane.update(new_plane) self._experimental_clipping_planes.append(plane) def set_view_slice(self): with self.dask_optimized_slicing(): self._set_view_slice() @abstractmethod def _set_view_slice(self): raise NotImplementedError() def _slice_dims(self, point=None, ndisplay=2, order=None): """Slice data with values from a global dims model. Note this will likely be moved off the base layer soon. Parameters ---------- point : list Values of data to slice at in world coordinates. ndisplay : int Number of dimensions to be displayed. order : list of int Order of dimensions, where last `ndisplay` will be rendered in canvas. """ if point is None: ndim = self.ndim else: ndim = len(point) if order is None: order = list(range(ndim)) # adjust the order of the global dims based on the number of # dimensions that a layer has - for example a global order of # [2, 1, 0, 3] -> [0, 1] for a layer that only has two dimensions # or -> [1, 0, 2] for a layer with three as that corresponds to # the relative order of the last two and three dimensions # respectively offset = ndim - self.ndim order = np.array(order) if offset <= 0: order = list(range(-offset)) + list(order - offset) else: order = list(order[order >= offset] - offset) if point is None: point = [0] * ndim nd = min(self.ndim, ndisplay) for i in order[-nd:]: point[i] = slice(None) else: point = list(point) # If no slide data has changed, then do nothing if ( np.all(order == self._dims_order) and ndisplay == self._ndisplay and np.all(point[offset:] == self._dims_point) ): return self._dims_order = order if self._ndisplay != ndisplay: self._ndisplay = ndisplay self.events._ndisplay() # Update the point values self._dims_point = point[offset:] self._update_dims() self._set_editable() @abstractmethod def _update_thumbnail(self): raise NotImplementedError() @abstractmethod def _get_value(self, position): """Value of the data at a position in data coordinates. Parameters ---------- position : tuple Position in data coordinates. Returns ------- value : tuple Value of the data. """ raise NotImplementedError()
[docs] def get_value( self, position, *, view_direction: Optional[np.ndarray] = None, dims_displayed: Optional[List[int]] = None, world=False, ): """Value of the data at a position. If the layer is not visible, return None. Parameters ---------- position : tuple Position in either data or world coordinates. view_direction : Optional[np.ndarray] A unit vector giving the direction of the ray in nD world coordinates. The default value is None. dims_displayed : Optional[List[int]] A list of the dimensions currently being displayed in the viewer. The default value is None. world : bool If True the position is taken to be in world coordinates and converted into data coordinates. False by default. Returns ------- value : tuple, None Value of the data. If the layer is not visible return None. """ if self.visible: if world: ndim_world = len(position) if dims_displayed is not None: # convert the dims_displayed to the layer dims.This accounts # for differences in the number of dimensions in the world # dims versus the layer and for transpose and rolls. dims_displayed = dims_displayed_world_to_layer( dims_displayed, ndim_world=ndim_world, ndim_layer=self.ndim, ) position = self.world_to_data(position) if dims_displayed is not None: if len(dims_displayed) == 2 or self.ndim == 2: value = self._get_value(position=tuple(position)) elif len(dims_displayed) == 3: view_direction = self._world_to_data_ray( list(view_direction) ) start_point, end_point = self.get_ray_intersections( position=position, view_direction=view_direction, dims_displayed=dims_displayed, world=False, ) value = self._get_value_3d( start_point=start_point, end_point=end_point, dims_displayed=dims_displayed, ) else: value = self._get_value(position) else: value = None # This should be removed as soon as possible, it is still # used in Points and Shapes. self._value = value return value
def _get_value_3d( self, start_point: np.ndarray, end_point: np.ndarray, dims_displayed: List[int], ) -> Union[float, int]: """Get the layer data value along a ray Parameters ---------- start_point : np.ndarray The start position of the ray used to interrogate the data. end_point : np.ndarray The end position of the ray used to interrogate the data. dims_displayed : List[int] The indices of the dimensions currently displayed in the Viewer. Returns ------- value The data value along the supplied ray. """ return None @contextmanager def block_update_properties(self): self._update_properties = False yield self._update_properties = True def _set_highlight(self, force=False): """Render layer highlights when appropriate. Parameters ---------- force : bool Bool that forces a redraw to occur when `True`. """ pass
[docs] def refresh(self, event=None): """Refresh all layer data based on current view slice.""" if self.visible: self.set_view_slice() self.events.set_data() self._update_thumbnail() self._set_highlight(force=True)
[docs] def world_to_data(self, position): """Convert from world coordinates to data coordinates. Parameters ---------- position : tuple, list, 1D array Position in world coordinates. If longer then the number of dimensions of the layer, the later dimensions will be used. Returns ------- tuple Position in data coordinates. """ if len(position) >= self.ndim: coords = list(position[-self.ndim :]) else: coords = [0] * (self.ndim - len(position)) + list(position) return tuple(self._transforms[1:].simplified.inverse(coords))
@property def _data_to_world(self) -> Affine: """The transform from data to world coordinates. This affine transform is composed from the affine property and the other transform properties in the following order: affine * (rotate * shear * scale + translate) """ return self._transforms[1:3].simplified def _world_to_data_ray(self, vector) -> tuple: """Convert a vector defining an orientation from world coordinates to data coordinates. For example, this would be used to convert the view ray. Parameters ---------- vector : tuple, list, 1D array A vector in world coordinates. Returns ------- tuple Vector in data coordinates. """ p1 = np.asarray(self.world_to_data(vector)) p0 = np.asarray(self.world_to_data(np.zeros_like(vector))) normalized_vector = (p1 - p0) / np.linalg.norm(p1 - p0) return tuple(normalized_vector) def _display_bounding_box(self, dims_displayed_mask: np.ndarray): """An axis aligned (self._ndisplay, 2) bounding box around the data""" return self._extent_data[:, dims_displayed_mask].T
[docs] def get_ray_intersections( self, position: List[float], view_direction: np.ndarray, dims_displayed: List[int], world: bool = True, ) -> Union[Tuple[np.ndarray, np.ndarray], Tuple[None, None]]: """Get the start and end point for the ray extending from a point through the data bounding box. Parameters ---------- position the position of the point in nD coordinates. World vs. data is set by the world keyword argument. view_direction : np.ndarray a unit vector giving the direction of the ray in nD coordinates. World vs. data is set by the world keyword argument. dims_displayed a list of the dimensions currently being displayed in the viewer. world : bool True if the provided coordinates are in world coordinates. Default value is True. Returns ------- start_point : np.ndarray The point on the axis-aligned data bounding box that the cursor click intersects with. This is the point closest to the camera. The point is the full nD coordinates of the layer data. If the click does not intersect the axis-aligned data bounding box, None is returned. end_point : np.ndarray The point on the axis-aligned data bounding box that the cursor click intersects with. This is the point farthest from the camera. The point is the full nD coordinates of the layer data. If the click does not intersect the axis-aligned data bounding box, None is returned. """ if len(dims_displayed) == 3: # create a mask to select the in view dimensions dims_displayed = dims_displayed dims_displayed_mask = np.zeros_like(position, dtype=bool) dims_displayed_mask[dims_displayed] = True # create the bounding box in data coordinates bbox = self._display_bounding_box(dims_displayed_mask) # get the view direction in data coords (only displayed dims) if world is True: view_dir = np.asarray(self._world_to_data_ray(view_direction))[ dims_displayed_mask ] else: view_dir = np.asarray(view_direction)[dims_displayed_mask] # Get the clicked point in data coords (only displayed dims) if world is True: click_pos_data = np.asarray(self.world_to_data(position))[ dims_displayed_mask ] else: click_pos_data = np.asarray(position)[dims_displayed_mask] # Determine the front and back faces front_face_normal, back_face_normal = find_front_back_face( click_pos_data, bbox, view_dir ) # Get the locations in the plane where the ray intersects if front_face_normal is not None and back_face_normal is not None: start_point_disp_dims = ( intersect_line_with_axis_aligned_bounding_box_3d( click_pos_data, view_dir, bbox, front_face_normal ) ) end_point_disp_dims = ( intersect_line_with_axis_aligned_bounding_box_3d( click_pos_data, view_dir, bbox, back_face_normal ) ) # add the coordinates for the axes not displayed start_point = np.asarray(position) start_point[dims_displayed_mask] = start_point_disp_dims end_point = np.asarray(position) end_point[dims_displayed_mask] = end_point_disp_dims else: # if the click doesn't intersect the data bounding box, # return None start_point = None end_point = None return start_point, end_point else: return None, None
@property def _displayed_axes(self): displayed_axes = [ self._dims_displayed[i] for i in self._dims_displayed_order ] return displayed_axes @property def _corner_pixels_displayed(self): displayed_axes = self._displayed_axes corner_pixels_displayed = self.corner_pixels[:, displayed_axes] return corner_pixels_displayed def _update_draw( self, scale_factor, corner_pixels_displayed, shape_threshold ): """Update canvas scale and corner values on draw. For layer multiscale determining if a new resolution level or tile is required. Parameters ---------- scale_factor : float Scale factor going from canvas to world coordinates. corner_pixels_displayed : array, shape (2, 2) Coordinates of the top-left and bottom-right canvas pixels in world coordinates. shape_threshold : tuple Requested shape of field of view in data coordinates. """ self.scale_factor = scale_factor displayed_axes = self._displayed_axes # we need to compute all four corners to compute a complete, # data-aligned bounding box, because top-left/bottom-right may not # remain top-left and bottom-right after transformations. all_corners = list(itertools.product(*corner_pixels_displayed.T)) # Note that we ignore the first transform which is tile2data data_corners = ( self._transforms[1:] .simplified.set_slice(displayed_axes) .inverse(all_corners) ) # find the maximal data-axis-aligned bounding box containing all four # canvas corners data_bbox = np.stack( [np.min(data_corners, axis=0), np.max(data_corners, axis=0)] ) # round and clip the bounding box values data_bbox_int = np.stack( [np.floor(data_bbox[0]), np.ceil(data_bbox[1])] ).astype(int) displayed_extent = self.extent.data[:, displayed_axes] data_bbox_clipped = np.clip( data_bbox_int, displayed_extent[0], displayed_extent[1] ) if self._ndisplay == 2 and self.multiscale: level, scaled_corners = compute_multiscale_level_and_corners( data_bbox_clipped, shape_threshold, self.downsample_factors[:, displayed_axes], ) corners = np.zeros((2, self.ndim)) corners[:, displayed_axes] = scaled_corners corners = corners.astype(int) if self.data_level != level or not np.all( self.corner_pixels == corners ): self._data_level = level self.corner_pixels = corners self.refresh() else: self.corner_pixels = data_bbox_clipped
[docs] def get_status( self, position: np.ndarray, *, view_direction: Optional[np.ndarray] = None, dims_displayed: Optional[List[int]] = None, world=False, ): """ Status message of the data at a coordinate position. Parameters ---------- position : tuple Position in either data or world coordinates. view_direction : Optional[np.ndarray] A unit vector giving the direction of the ray in nD world coordinates. The default value is None. dims_displayed : Optional[List[int]] A list of the dimensions currently being displayed in the viewer. The default value is None. world : bool If True the position is taken to be in world coordinates and converted into data coordinates. False by default. Returns ------- msg : string String containing a message that can be used as a status update. """ value = self.get_value( position, view_direction=view_direction, dims_displayed=dims_displayed, world=world, ) return generate_layer_status(self.name, position, value)
def _get_tooltip_text(self, position, *, world=False): """ tooltip message of the data at a coordinate position. Parameters ---------- position : tuple Position in either data or world coordinates. world : bool If True the position is taken to be in world coordinates and converted into data coordinates. False by default. Returns ------- msg : string String containing a message that can be used as a tooltip. """ return ""
[docs] def save(self, path: str, plugin: Optional[str] = None) -> List[str]: """Save this layer to ``path`` with default (or specified) plugin. Parameters ---------- path : str A filepath, directory, or URL to open. Extensions may be used to specify output format (provided a plugin is available for the requested format). plugin : str, optional Name of the plugin to use for saving. If ``None`` then all plugins corresponding to appropriate hook specification will be looped through to find the first one that can save the data. Returns ------- list of str File paths of any files that were written. """ from ...plugins.io import save_layers return save_layers(path, [self], plugin=plugin)
def _on_selection(self, selected: bool): # This method is a temporary workaround to the fact that the Points # layer needs to know when its selection state changes so that it can # update the highlight state. This, along with the events.select and # events.deselect emitters, (and the LayerList._on_selection_event # method) can be removed once highlighting logic has been removed from # the layer model. if selected: self.events.select() else: self.events.deselect()
[docs] @classmethod def create( cls, data, meta: dict = None, layer_type: Optional[str] = None ) -> Layer: """Create layer from `data` of type `layer_type`. Primarily intended for usage by reader plugin hooks and creating a layer from an unwrapped layer data tuple. Parameters ---------- data : Any Data in a format that is valid for the corresponding `layer_type`. meta : dict, optional Dict of keyword arguments that will be passed to the corresponding layer constructor. If any keys in `meta` are not valid for the corresponding layer type, an exception will be raised. layer_type : str Type of layer to add. Must be the (case insensitive) name of a Layer subclass. If not provided, the layer is assumed to be "image", unless data.dtype is one of (np.int32, np.uint32, np.int64, np.uint64), in which case it is assumed to be "labels". Raises ------ ValueError If ``layer_type`` is not one of the recognized layer types. TypeError If any keyword arguments in ``meta`` are unexpected for the corresponding `add_*` method for this layer_type. Examples -------- A typical use case might be to upack a tuple of layer data with a specified layer_type. >>> data = ( ... np.random.random((10, 2)) * 20, ... {'face_color': 'blue'}, ... 'points', ... ) >>> Layer.create(*data) """ from ... import layers from ..image._image_utils import guess_labels layer_type = (layer_type or '').lower() # assumes that big integer type arrays are likely labels. if not layer_type: layer_type = guess_labels(data) if layer_type not in layers.NAMES: raise ValueError( f"Unrecognized layer_type: '{layer_type}'. " f"Must be one of: {layers.NAMES}." ) Cls = getattr(layers, layer_type.title()) try: return Cls(data, **(meta or {})) except Exception as exc: if 'unexpected keyword argument' not in str(exc): raise exc bad_key = str(exc).split('keyword argument ')[-1] raise TypeError( "_add_layer_from_data received an unexpected keyword " f"argument ({bad_key}) for layer type {layer_type}" ) from exc