from __future__ import annotations
import itertools
import warnings
from abc import ABC, abstractmethod
from collections import defaultdict, namedtuple
from contextlib import contextmanager
from typing import List, Optional, Tuple, Union
import magicgui as mgui
import numpy as np
from ...utils._dask_utils import configure_dask
from ...utils._magicgui import add_layer_to_viewer, get_layers
from ...utils.events import EmitterGroup, Event
from ...utils.events.event import WarningEmitter
from ...utils.geometry import (
    find_front_back_face,
    intersect_line_with_axis_aligned_bounding_box_3d,
)
from ...utils.key_bindings import KeymapProvider
from ...utils.misc import ROOT_DIR
from ...utils.mouse_bindings import MousemapProvider
from ...utils.naming import magic_name
from ...utils.status_messages import generate_layer_status
from ...utils.transforms import Affine, CompositeAffine, TransformChain
from ...utils.translations import trans
from .._source import current_source
from ..utils.layer_utils import (
    coerce_affine,
    compute_multiscale_level_and_corners,
    convert_to_uint8,
    dims_displayed_world_to_layer,
)
from ..utils.plane import ClippingPlane, ClippingPlaneList
from ._base_constants import Blending
Extent = namedtuple('Extent', 'data world step')
def no_op(layer: Layer, event: Event) -> None:
    """
    A convenient no-op event for the layer mouse binding.
    This makes it easier to handle many cases by inserting this as
    as place holder
    Parameters
    ----------
    layer : Layer
        Current layer on which this will be bound as a callback
    event : Event
        event that triggered this mouse callback.
    Returns
    -------
    None
    """
    return None
[docs]@mgui.register_type(choices=get_layers, return_callback=add_layer_to_viewer)
class Layer(KeymapProvider, MousemapProvider, ABC):
    """Base layer class.
    Parameters
    ----------
    name : str
        Name of the layer.
    metadata : dict
        Layer metadata.
    scale : tuple of float
        Scale factors for the layer.
    translate : tuple of float
        Translation values for the layer.
    rotate : float, 3-tuple of float, or n-D array.
        If a float convert into a 2D rotation matrix using that value as an
        angle. If 3-tuple convert into a 3D rotation matrix, using a yaw,
        pitch, roll convention. Otherwise assume an nD rotation. Angles are
        assumed to be in degrees. They can be converted from radians with
        np.degrees if needed.
    shear : 1-D array or n-D array
        Either a vector of upper triangular values, or an nD shear matrix with
        ones along the main diagonal.
    affine : n-D array or napari.utils.transforms.Affine
        (N+1, N+1) affine transformation matrix in homogeneous coordinates.
        The first (N, N) entries correspond to a linear transform and
        the final column is a length N translation vector and a 1 or a napari
        `Affine` transform object. Applied as an extra transform on top of the
        provided scale, rotate, and shear values.
    opacity : float
        Opacity of the layer visual, between 0.0 and 1.0.
    blending : str
        One of a list of preset blending modes that determines how RGB and
        alpha values of the layer visual get mixed. Allowed values are
        {'opaque', 'translucent', 'translucent_no_depth', and 'additive'}.
    visible : bool
        Whether the layer visual is currently being displayed.
    multiscale : bool
        Whether the data is multiscale or not. Multiscale data is
        represented by a list of data objects and should go from largest to
        smallest.
    Attributes
    ----------
    name : str
        Unique name of the layer.
    opacity : float
        Opacity of the layer visual, between 0.0 and 1.0.
    visible : bool
        Whether the layer visual is currently being displayed.
    blending : Blending
        Determines how RGB and alpha values get mixed.
            Blending.OPAQUE
                Allows for only the top layer to be visible and corresponds to
                depth_test=True, cull_face=False, blend=False.
            Blending.TRANSLUCENT
                Allows for multiple layers to be blended with different opacity
                and corresponds to depth_test=True, cull_face=False,
                blend=True, blend_func=('src_alpha', 'one_minus_src_alpha').
            Blending.TRANSLUCENT_NO_DEPTH
                Allows for multiple layers to be blended with different opacity,
                but no depth testing is performed.
                and corresponds to depth_test=False, cull_face=False,
                blend=True, blend_func=('src_alpha', 'one_minus_src_alpha').
            Blending.ADDITIVE
                Allows for multiple layers to be blended together with
                different colors and opacity. Useful for creating overlays. It
                corresponds to depth_test=False, cull_face=False, blend=True,
                blend_func=('src_alpha', 'one').
    scale : tuple of float
        Scale factors for the layer.
    translate : tuple of float
        Translation values for the layer.
    rotate : float, 3-tuple of float, or n-D array.
        If a float convert into a 2D rotation matrix using that value as an
        angle. If 3-tuple convert into a 3D rotation matrix, using a yaw,
        pitch, roll convention. Otherwise assume an nD rotation. Angles are
        assumed to be in degrees. They can be converted from radians with
        np.degrees if needed.
    shear : 1-D array or n-D array
        Either a vector of upper triangular values, or an nD shear matrix with
        ones along the main diagonal.
    affine : n-D array or napari.utils.transforms.Affine
        (N+1, N+1) affine transformation matrix in homogeneous coordinates.
        The first (N, N) entries correspond to a linear transform and
        the final column is a length N translation vector and a 1 or a napari
        `Affine` transform object. Applied as an extra transform on top of the
        provided scale, rotate, and shear values.
    multiscale : bool
        Whether the data is multiscale or not. Multiscale data is
        represented by a list of data objects and should go from largest to
        smallest.
    cache : bool
        Whether slices of out-of-core datasets should be cached upon retrieval.
        Currently, this only applies to dask arrays.
    z_index : int
        Depth of the layer visual relative to other visuals in the scenecanvas.
    coordinates : tuple of float
        Cursor position in data coordinates.
    corner_pixels : array
        Coordinates of the top-left and bottom-right canvas pixels in the data
        coordinates of each layer. For multiscale data the coordinates are in
        the space of the currently viewed data level, not the highest resolution
        level.
    position : tuple
        Cursor position in world coordinates.
    ndim : int
        Dimensionality of the layer.
    thumbnail : (N, M, 4) array
        Array of thumbnail data for the layer.
    status : str
        Displayed in status bar bottom left.
    help : str
        Displayed in status bar bottom right.
    interactive : bool
        Determine if canvas pan/zoom interactivity is enabled.
    cursor : str
        String identifying which cursor displayed over canvas.
    cursor_size : int | None
        Size of cursor if custom. None yields default size
    scale_factor : float
        Conversion factor from canvas coordinates to image coordinates, which
        depends on the current zoom level.
    Notes
    -----
    Must define the following:
        * `_extent_data`: property
        * `data` property (setter & getter)
    May define the following:
        * `_set_view_slice()`: called to set currently viewed slice
        * `_basename()`: base/default name of the layer
    """
    def __init__(
        self,
        data,
        ndim,
        *,
        name=None,
        metadata=None,
        scale=None,
        translate=None,
        rotate=None,
        shear=None,
        affine=None,
        opacity=1,
        blending='translucent',
        visible=True,
        multiscale=False,
        cache=True,  # this should move to future "data source" object.
        experimental_clipping_planes=None,
    ):
        super().__init__()
        if name is None and data is not None:
            name = magic_name(data, path_prefix=ROOT_DIR)
        self._source = current_source()
        self.dask_optimized_slicing = configure_dask(data, cache)
        self._metadata = dict(metadata or {})
        self._opacity = opacity
        self._blending = Blending(blending)
        self._visible = visible
        self._freeze = False
        self._status = 'Ready'
        self._help = ''
        self._cursor = 'standard'
        self._cursor_size = 1
        self._interactive = True
        self._value = None
        self.scale_factor = 1
        self.multiscale = multiscale
        self._experimental_clipping_planes = ClippingPlaneList()
        self._ndim = ndim
        self._ndisplay = 2
        self._dims_order = list(range(ndim))
        # Create a transform chain consisting of four transforms:
        # 1. `tile2data`: An initial transform only needed to display tiles
        #   of an image. It maps pixels of the tile into the coordinate space
        #   of the full resolution data and can usually be represented by a
        #   scale factor and a translation. A common use case is viewing part
        #   of lower resolution level of a multiscale image, another is using a
        #   downsampled version of an image when the full image size is larger
        #   than the maximum allowed texture size of your graphics card.
        # 2. `data2physical`: The main transform mapping data to a world-like
        #   physical coordinate that may also encode acquisition parameters or
        #   sample spacing.
        # 3. `physical2world`: An extra transform applied in world-coordinates that
        #   typically aligns this layer with another.
        # 4. `world2grid`: An additional transform mapping world-coordinates
        #   into a grid for looking at layers side-by-side.
        if scale is None:
            scale = [1] * ndim
        if translate is None:
            translate = [0] * ndim
        self._transforms = TransformChain(
            [
                Affine(np.ones(ndim), np.zeros(ndim), name='tile2data'),
                CompositeAffine(
                    scale,
                    translate,
                    rotate=rotate,
                    shear=shear,
                    ndim=ndim,
                    name='data2physical',
                ),
                coerce_affine(affine, ndim=ndim, name='physical2world'),
                Affine(np.ones(ndim), np.zeros(ndim), name='world2grid'),
            ]
        )
        self._position = (0,) * ndim
        self._dims_point = [0] * ndim
        self.corner_pixels = np.zeros((2, ndim), dtype=int)
        self._editable = True
        self._thumbnail_shape = (32, 32, 4)
        self._thumbnail = np.zeros(self._thumbnail_shape, dtype=np.uint8)
        self._update_properties = True
        self._name = ''
        self.experimental_clipping_planes = experimental_clipping_planes
        self.events = EmitterGroup(
            source=self,
            auto_connect=False,
            refresh=Event,
            set_data=Event,
            blending=Event,
            opacity=Event,
            visible=Event,
            scale=Event,
            translate=Event,
            rotate=Event,
            shear=Event,
            affine=Event,
            data=Event,
            name=Event,
            thumbnail=Event,
            status=Event,
            help=Event,
            interactive=Event,
            cursor=Event,
            cursor_size=Event,
            editable=Event,
            loaded=Event,
            _ndisplay=Event,
            select=WarningEmitter(
                trans._(
                    "'layer.events.select' is deprecated and will be removed in napari v0.4.9, use 'viewer.layers.selection.events.changed' instead, and inspect the 'added' attribute on the event.",
                    deferred=True,
                ),
                type='select',
            ),
            deselect=WarningEmitter(
                trans._(
                    "'layer.events.deselect' is deprecated and will be removed in napari v0.4.9, use 'viewer.layers.selection.events.changed' instead, and inspect the 'removed' attribute on the event.",
                    deferred=True,
                ),
                type='deselect',
            ),
        )
        self.name = name
    def __str__(self):
        """Return self.name."""
        return self.name
    def __repr__(self):
        cls = type(self)
        return f"<{cls.__name__} layer {repr(self.name)} at {hex(id(self))}>"
    def _mode_setter_helper(self, mode, Modeclass):
        """
        Helper to manage callbacks in multiple layers
        Parameters
        ----------
        mode : Modeclass | str
            New mode for the current layer.
        Modeclass : Enum
            Enum for the current class representing the modes it can takes,
            this is usually specific on each subclass.
        Returns
        -------
        tuple (new Mode, mode changed)
        """
        mode = Modeclass(mode)
        assert mode is not None
        if not self.editable:
            mode = Modeclass.PAN_ZOOM
        if mode == self._mode:
            return mode, False
        if mode.value not in Modeclass.keys():
            raise ValueError(
                trans._(
                    "Mode not recognized: {mode}", deferred=True, mode=mode
                )
            )
        old_mode = self._mode
        self._mode = mode
        for callback_list, mode_dict in [
            (self.mouse_drag_callbacks, self._drag_modes),
            (self.mouse_move_callbacks, self._move_modes),
            (
                self.mouse_double_click_callbacks,
                getattr(
                    self, '_double_click_modes', defaultdict(lambda: no_op)
                ),
            ),
        ]:
            if mode_dict[old_mode] in callback_list:
                callback_list.remove(mode_dict[old_mode])
            callback_list.append(mode_dict[mode])
        self.cursor = self._cursor_modes[mode]
        if mode == Modeclass.PAN_ZOOM:
            self.interactive = True
        else:
            self.interactive = False
        return mode, True
    @classmethod
    def _basename(cls):
        return f'{cls.__name__}'
    @property
    def name(self):
        """str: Unique name of the layer."""
        return self._name
    @name.setter
    def name(self, name):
        if name == self.name:
            return
        if not name:
            name = self._basename()
        self._name = name
        self.events.name()
    @property
    def metadata(self) -> dict:
        """Key/value map for user-stored data."""
        return self._metadata
    @metadata.setter
    def metadata(self, value: dict) -> None:
        self._metadata.clear()
        self._metadata.update(value)
    @property
    def source(self):
        return self._source
    @property
    def loaded(self) -> bool:
        """Return True if this layer is fully loaded in memory.
        This base class says that layers are permanently in the loaded state.
        Derived classes that do asynchronous loading can override this.
        """
        return True
    @property
    def opacity(self):
        """float: Opacity value between 0.0 and 1.0."""
        return self._opacity
    @opacity.setter
    def opacity(self, opacity):
        if not 0.0 <= opacity <= 1.0:
            raise ValueError(
                trans._(
                    'opacity must be between 0.0 and 1.0; got {opacity}',
                    deferred=True,
                    opacity=opacity,
                )
            )
        self._opacity = opacity
        self._update_thumbnail()
        self.events.opacity()
    @property
    def blending(self):
        """Blending mode: Determines how RGB and alpha values get mixed.
        Blending.OPAQUE
            Allows for only the top layer to be visible and corresponds to
            depth_test=True, cull_face=False, blend=False.
        Blending.TRANSLUCENT
            Allows for multiple layers to be blended with different opacity
            and corresponds to depth_test=True, cull_face=False,
            blend=True, blend_func=('src_alpha', 'one_minus_src_alpha').
        Blending.ADDITIVE
            Allows for multiple layers to be blended together with
            different colors and opacity. Useful for creating overlays. It
            corresponds to depth_test=False, cull_face=False, blend=True,
            blend_func=('src_alpha', 'one').
        """
        return str(self._blending)
    @blending.setter
    def blending(self, blending):
        self._blending = Blending(blending)
        self.events.blending()
    @property
    def visible(self):
        """bool: Whether the visual is currently being displayed."""
        return self._visible
    @visible.setter
    def visible(self, visibility):
        self._visible = visibility
        self.refresh()
        self.events.visible()
        if self.visible:
            self.editable = self._set_editable()
        else:
            self.editable = False
    @property
    def editable(self):
        """bool: Whether the current layer data is editable from the viewer."""
        return self._editable
    @editable.setter
    def editable(self, editable):
        if self._editable == editable:
            return
        self._editable = editable
        self._set_editable(editable=editable)
        self.events.editable()
    @property
    def scale(self):
        """list: Anisotropy factors to scale data into world coordinates."""
        return self._transforms['data2physical'].scale
    @scale.setter
    def scale(self, scale):
        self._transforms['data2physical'].scale = np.array(scale)
        self._update_dims()
        self.events.scale()
    @property
    def translate(self):
        """list: Factors to shift the layer by in units of world coordinates."""
        return self._transforms['data2physical'].translate
    @translate.setter
    def translate(self, translate):
        self._transforms['data2physical'].translate = np.array(translate)
        self._update_dims()
        self.events.translate()
    @property
    def rotate(self):
        """array: Rotation matrix in world coordinates."""
        return self._transforms['data2physical'].rotate
    @rotate.setter
    def rotate(self, rotate):
        self._transforms['data2physical'].rotate = rotate
        self._update_dims()
        self.events.rotate()
    @property
    def shear(self):
        """array: Shear matrix in world coordinates."""
        return self._transforms['data2physical'].shear
    @shear.setter
    def shear(self, shear):
        self._transforms['data2physical'].shear = shear
        self._update_dims()
        self.events.shear()
    @property
    def affine(self):
        """napari.utils.transforms.Affine: Extra affine transform to go from physical to world coordinates."""
        return self._transforms['physical2world']
    @affine.setter
    def affine(self, affine):
        # Assignment by transform name is not supported by TransformChain and
        # EventedList, so use the integer index instead. For more details, see:
        # https://github.com/napari/napari/issues/3058
        self._transforms[2] = coerce_affine(
            affine, ndim=self.ndim, name='physical2world'
        )
        self._update_dims()
        self.events.affine()
    @property
    def translate_grid(self):
        """list: Factors to shift the layer by."""
        return self._transforms['world2grid'].translate
    @translate_grid.setter
    def translate_grid(self, translate_grid):
        if np.all(self.translate_grid == translate_grid):
            return
        self._transforms['world2grid'].translate = np.array(translate_grid)
        self.events.translate()
    @property
    def _is_moving(self):
        return self._private_is_moving
    @_is_moving.setter
    def _is_moving(self, value):
        assert value in (True, False)
        if value:
            assert self._moving_coordinates is not None
        self._private_is_moving = value
    @property
    def _dims_displayed(self):
        """To be removed displayed dimensions."""
        # Ultimately we aim to remove all slicing information from the layer
        # itself so that layers can be sliced in different ways for multiple
        # canvas. See https://github.com/napari/napari/pull/1919#issuecomment-738585093
        # for additional discussion.
        return self._dims_order[-self._ndisplay :]
    @property
    def _dims_not_displayed(self):
        """To be removed not displayed dimensions."""
        # Ultimately we aim to remove all slicing information from the layer
        # itself so that layers can be sliced in different ways for multiple
        # canvas. See https://github.com/napari/napari/pull/1919#issuecomment-738585093
        # for additional discussion.
        return self._dims_order[: -self._ndisplay]
    @property
    def _dims_displayed_order(self):
        """To be removed order of displayed dimensions."""
        # Ultimately we aim to remove all slicing information from the layer
        # itself so that layers can be sliced in different ways for multiple
        # canvas. See https://github.com/napari/napari/pull/1919#issuecomment-738585093
        # for additional discussion.
        order = np.array(self._dims_displayed)
        order[np.argsort(order)] = list(range(len(order)))
        return tuple(order)
    def _update_dims(self, event=None):
        """Updates dims model, which is useful after data has been changed."""
        ndim = self._get_ndim()
        old_ndim = self._ndim
        if old_ndim > ndim:
            keep_axes = range(old_ndim - ndim, old_ndim)
            self._transforms = self._transforms.set_slice(keep_axes)
            self._dims_point = self._dims_point[-ndim:]
            arr = np.array(self._dims_order[-ndim:])
            arr[np.argsort(arr)] = range(len(arr))
            self._dims_order = arr.tolist()
            self._position = self._position[-ndim:]
        elif old_ndim < ndim:
            new_axes = range(ndim - old_ndim)
            self._transforms = self._transforms.expand_dims(new_axes)
            self._dims_point = [0] * (ndim - old_ndim) + self._dims_point
            self._dims_order = list(range(ndim - old_ndim)) + [
                o + ndim - old_ndim for o in self._dims_order
            ]
            self._position = (0,) * (ndim - old_ndim) + self._position
        self._ndim = ndim
        self.refresh()
    @property
    @abstractmethod
    def data(self):
        # user writes own docstring
        raise NotImplementedError()
    @data.setter
    @abstractmethod
    def data(self, data):
        raise NotImplementedError()
    @property
    @abstractmethod
    def _extent_data(self) -> np.ndarray:
        """Extent of layer in data coordinates.
        Returns
        -------
        extent_data : array, shape (2, D)
        """
        raise NotImplementedError()
    @property
    def _extent_world(self) -> np.ndarray:
        """Range of layer in world coordinates.
        Returns
        -------
        extent_world : array, shape (2, D)
        """
        # Get full nD bounding box
        return self._get_extent_world(self._extent_data)
    def _get_extent_world(self, data_extent):
        """Range of layer in world coordinates base on provided data_extent
        Returns
        -------
        extent_world : array, shape (2, D)
        """
        D = data_extent.shape[1]
        full_data_extent = np.array(np.meshgrid(*data_extent.T)).T.reshape(
            -1, D
        )
        full_world_extent = self._data_to_world(full_data_extent)
        world_extent = np.array(
            [
                np.min(full_world_extent, axis=0),
                np.max(full_world_extent, axis=0),
            ]
        )
        return world_extent
    @property
    def extent(self) -> Extent:
        """Extent of layer in data and world coordinates."""
        data = self._extent_data
        return Extent(
            data=data,
            world=self._get_extent_world(data),
            step=abs(self._data_to_world.scale),
        )
    @property
    def _slice_indices(self):
        """(D, ) array: Slice indices in data coordinates."""
        inv_transform = self._data_to_world.inverse
        if self.ndim > self._ndisplay:
            # Subspace spanned by non displayed dimensions
            non_displayed_subspace = np.zeros(self.ndim)
            for d in self._dims_not_displayed:
                non_displayed_subspace[d] = 1
            # Map subspace through inverse transform, ignoring translation
            mapped_nd_subspace = inv_transform(
                non_displayed_subspace
            ) - inv_transform(np.zeros(self.ndim))
            # Look at displayed subspace
            displayed_mapped_subspace = [
                mapped_nd_subspace[d] for d in self._dims_displayed
            ]
            # Check that displayed subspace is null
            if not np.allclose(displayed_mapped_subspace, 0):
                warnings.warn(
                    trans._(
                        'Non-orthogonal slicing is being requested, but is not fully supported. Data is displayed without applying an out-of-slice rotation or shear component.',
                        deferred=True,
                    ),
                    category=UserWarning,
                )
        slice_inv_transform = inv_transform.set_slice(self._dims_not_displayed)
        world_pts = [self._dims_point[ax] for ax in self._dims_not_displayed]
        data_pts = slice_inv_transform(world_pts)
        if not hasattr(self, "_round_index") or self._round_index:
            # A round is taken to convert these values to slicing integers
            data_pts = np.round(data_pts).astype(int)
        indices = [slice(None)] * self.ndim
        for i, ax in enumerate(self._dims_not_displayed):
            indices[ax] = data_pts[i]
        return tuple(indices)
    @abstractmethod
    def _get_ndim(self):
        raise NotImplementedError()
    def _set_editable(self, editable=None):
        if editable is None:
            self.editable = True
    def _get_base_state(self):
        """Get dictionary of attributes on base layer.
        Returns
        -------
        state : dict
            Dictionary of attributes on base layer.
        """
        base_dict = {
            'name': self.name,
            'metadata': self.metadata,
            'scale': list(self.scale),
            'translate': list(self.translate),
            'rotate': [list(r) for r in self.rotate],
            'shear': list(self.shear),
            'opacity': self.opacity,
            'blending': self.blending,
            'visible': self.visible,
            'experimental_clipping_planes': [
                plane.dict() for plane in self.experimental_clipping_planes
            ],
        }
        return base_dict
    @abstractmethod
    def _get_state(self):
        raise NotImplementedError()
    @property
    def _type_string(self):
        return self.__class__.__name__.lower()
    def as_layer_data_tuple(self):
        state = self._get_state()
        state.pop('data', None)
        return self.data, state, self._type_string
    @property
    def thumbnail(self):
        """array: Integer array of thumbnail for the layer"""
        return self._thumbnail
    @thumbnail.setter
    def thumbnail(self, thumbnail):
        if 0 in thumbnail.shape:
            thumbnail = np.zeros(self._thumbnail_shape, dtype=np.uint8)
        if thumbnail.dtype != np.uint8:
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                thumbnail = convert_to_uint8(thumbnail)
        padding_needed = np.subtract(self._thumbnail_shape, thumbnail.shape)
        pad_amounts = [(p // 2, (p + 1) // 2) for p in padding_needed]
        thumbnail = np.pad(thumbnail, pad_amounts, mode='constant')
        # blend thumbnail with opaque black background
        background = np.zeros(self._thumbnail_shape, dtype=np.uint8)
        background[..., 3] = 255
        f_dest = thumbnail[..., 3][..., None] / 255
        f_source = 1 - f_dest
        thumbnail = thumbnail * f_dest + background * f_source
        self._thumbnail = thumbnail.astype(np.uint8)
        self.events.thumbnail()
    @property
    def ndim(self):
        """int: Number of dimensions in the data."""
        return self._ndim
    @property
    def help(self):
        """str: displayed in status bar bottom right."""
        return self._help
    @help.setter
    def help(self, help):
        if help == self.help:
            return
        self.events.help(help=help)
        self._help = help
    @property
    def interactive(self):
        """bool: Determine if canvas pan/zoom interactivity is enabled."""
        return self._interactive
    @interactive.setter
    def interactive(self, interactive):
        if interactive == self.interactive:
            return
        self.events.interactive(interactive=interactive)
        self._interactive = interactive
    @property
    def cursor(self):
        """str: String identifying cursor displayed over canvas."""
        return self._cursor
    @cursor.setter
    def cursor(self, cursor):
        if cursor == self.cursor:
            return
        self.events.cursor(cursor=cursor)
        self._cursor = cursor
    @property
    def cursor_size(self):
        """int | None: Size of cursor if custom. None yields default size."""
        return self._cursor_size
    @cursor_size.setter
    def cursor_size(self, cursor_size):
        if cursor_size == self.cursor_size:
            return
        self.events.cursor_size(cursor_size=cursor_size)
        self._cursor_size = cursor_size
    @property
    def experimental_clipping_planes(self):
        return self._experimental_clipping_planes
    @experimental_clipping_planes.setter
    def experimental_clipping_planes(
        self,
        value: Union[
            dict,
            ClippingPlane,
            List[Union[ClippingPlane, dict]],
            ClippingPlaneList,
        ],
    ):
        self._experimental_clipping_planes.clear()
        if value is None:
            return
        if isinstance(value, (ClippingPlane, dict)):
            value = [value]
        for new_plane in value:
            plane = ClippingPlane()
            plane.update(new_plane)
            self._experimental_clipping_planes.append(plane)
    def set_view_slice(self):
        with self.dask_optimized_slicing():
            self._set_view_slice()
    @abstractmethod
    def _set_view_slice(self):
        raise NotImplementedError()
    def _slice_dims(self, point=None, ndisplay=2, order=None):
        """Slice data with values from a global dims model.
        Note this will likely be moved off the base layer soon.
        Parameters
        ----------
        point : list
            Values of data to slice at in world coordinates.
        ndisplay : int
            Number of dimensions to be displayed.
        order : list of int
            Order of dimensions, where last `ndisplay` will be
            rendered in canvas.
        """
        if point is None:
            ndim = self.ndim
        else:
            ndim = len(point)
        if order is None:
            order = list(range(ndim))
        # adjust the order of the global dims based on the number of
        # dimensions that a layer has - for example a global order of
        # [2, 1, 0, 3] -> [0, 1] for a layer that only has two dimensions
        # or -> [1, 0, 2] for a layer with three as that corresponds to
        # the relative order of the last two and three dimensions
        # respectively
        offset = ndim - self.ndim
        order = np.array(order)
        if offset <= 0:
            order = list(range(-offset)) + list(order - offset)
        else:
            order = list(order[order >= offset] - offset)
        if point is None:
            point = [0] * ndim
            nd = min(self.ndim, ndisplay)
            for i in order[-nd:]:
                point[i] = slice(None)
        else:
            point = list(point)
        # If no slide data has changed, then do nothing
        if (
            np.all(order == self._dims_order)
            and ndisplay == self._ndisplay
            and np.all(point[offset:] == self._dims_point)
        ):
            return
        self._dims_order = order
        if self._ndisplay != ndisplay:
            self._ndisplay = ndisplay
            self.events._ndisplay()
        # Update the point values
        self._dims_point = point[offset:]
        self._update_dims()
        self._set_editable()
    @abstractmethod
    def _update_thumbnail(self):
        raise NotImplementedError()
    @abstractmethod
    def _get_value(self, position):
        """Value of the data at a position in data coordinates.
        Parameters
        ----------
        position : tuple
            Position in data coordinates.
        Returns
        -------
        value : tuple
            Value of the data.
        """
        raise NotImplementedError()
[docs]    def get_value(
        self,
        position,
        *,
        view_direction: Optional[np.ndarray] = None,
        dims_displayed: Optional[List[int]] = None,
        world=False,
    ):
        """Value of the data at a position.
        If the layer is not visible, return None.
        Parameters
        ----------
        position : tuple
            Position in either data or world coordinates.
        view_direction : Optional[np.ndarray]
            A unit vector giving the direction of the ray in nD world coordinates.
            The default value is None.
        dims_displayed : Optional[List[int]]
            A list of the dimensions currently being displayed in the viewer.
            The default value is None.
        world : bool
            If True the position is taken to be in world coordinates
            and converted into data coordinates. False by default.
        Returns
        -------
        value : tuple, None
            Value of the data. If the layer is not visible return None.
        """
        if self.visible:
            if world:
                ndim_world = len(position)
                if dims_displayed is not None:
                    # convert the dims_displayed to the layer dims.This accounts
                    # for differences in the number of dimensions in the world
                    # dims versus the layer and for transpose and rolls.
                    dims_displayed = dims_displayed_world_to_layer(
                        dims_displayed,
                        ndim_world=ndim_world,
                        ndim_layer=self.ndim,
                    )
                position = self.world_to_data(position)
            if dims_displayed is not None:
                if len(dims_displayed) == 2 or self.ndim == 2:
                    value = self._get_value(position=tuple(position))
                elif len(dims_displayed) == 3:
                    view_direction = self._world_to_data_ray(
                        list(view_direction)
                    )
                    start_point, end_point = self.get_ray_intersections(
                        position=position,
                        view_direction=view_direction,
                        dims_displayed=dims_displayed,
                        world=False,
                    )
                    value = self._get_value_3d(
                        start_point=start_point,
                        end_point=end_point,
                        dims_displayed=dims_displayed,
                    )
            else:
                value = self._get_value(position)
        else:
            value = None
        # This should be removed as soon as possible, it is still
        # used in Points and Shapes.
        self._value = value
        return value 
    def _get_value_3d(
        self,
        start_point: np.ndarray,
        end_point: np.ndarray,
        dims_displayed: List[int],
    ) -> Union[float, int]:
        """Get the layer data value along a ray
        Parameters
        ----------
        start_point : np.ndarray
            The start position of the ray used to interrogate the data.
        end_point : np.ndarray
            The end position of the ray used to interrogate the data.
        dims_displayed : List[int]
            The indices of the dimensions currently displayed in the Viewer.
        Returns
        -------
        value
            The data value along the supplied ray.
        """
        return None
    @contextmanager
    def block_update_properties(self):
        self._update_properties = False
        yield
        self._update_properties = True
    def _set_highlight(self, force=False):
        """Render layer highlights when appropriate.
        Parameters
        ----------
        force : bool
            Bool that forces a redraw to occur when `True`.
        """
        pass
[docs]    def refresh(self, event=None):
        """Refresh all layer data based on current view slice."""
        if self.visible:
            self.set_view_slice()
            self.events.set_data()
            self._update_thumbnail()
            self._set_highlight(force=True) 
[docs]    def world_to_data(self, position):
        """Convert from world coordinates to data coordinates.
        Parameters
        ----------
        position : tuple, list, 1D array
            Position in world coordinates. If longer then the
            number of dimensions of the layer, the later
            dimensions will be used.
        Returns
        -------
        tuple
            Position in data coordinates.
        """
        if len(position) >= self.ndim:
            coords = list(position[-self.ndim :])
        else:
            coords = [0] * (self.ndim - len(position)) + list(position)
        return tuple(self._transforms[1:].simplified.inverse(coords)) 
    @property
    def _data_to_world(self) -> Affine:
        """The transform from data to world coordinates.
        This affine transform is composed from the affine property and the
        other transform properties in the following order:
        affine * (rotate * shear * scale + translate)
        """
        return self._transforms[1:3].simplified
    def _world_to_data_ray(self, vector) -> tuple:
        """Convert a vector defining an orientation from world coordinates to data coordinates.
        For example, this would be used to convert the view ray.
        Parameters
        ----------
        vector : tuple, list, 1D array
            A vector in world coordinates.
        Returns
        -------
        tuple
            Vector in data coordinates.
        """
        p1 = np.asarray(self.world_to_data(vector))
        p0 = np.asarray(self.world_to_data(np.zeros_like(vector)))
        normalized_vector = (p1 - p0) / np.linalg.norm(p1 - p0)
        return tuple(normalized_vector)
    def _display_bounding_box(self, dims_displayed_mask: np.ndarray):
        """An axis aligned (self._ndisplay, 2) bounding box around the data"""
        return self._extent_data[:, dims_displayed_mask].T
[docs]    def get_ray_intersections(
        self,
        position: List[float],
        view_direction: np.ndarray,
        dims_displayed: List[int],
        world: bool = True,
    ) -> Union[Tuple[np.ndarray, np.ndarray], Tuple[None, None]]:
        """Get the start and end point for the ray extending
        from a point through the data bounding box.
        Parameters
        ----------
        position
            the position of the point in nD coordinates. World vs. data
            is set by the world keyword argument.
        view_direction : np.ndarray
            a unit vector giving the direction of the ray in nD coordinates.
            World vs. data is set by the world keyword argument.
        dims_displayed
            a list of the dimensions currently being displayed in the viewer.
        world : bool
            True if the provided coordinates are in world coordinates.
            Default value is True.
        Returns
        -------
        start_point : np.ndarray
            The point on the axis-aligned data bounding box that the cursor click
            intersects with. This is the point closest to the camera.
            The point is the full nD coordinates of the layer data.
            If the click does not intersect the axis-aligned data bounding box,
            None is returned.
        end_point : np.ndarray
            The point on the axis-aligned data bounding box that the cursor click
            intersects with. This is the point farthest from the camera.
            The point is the full nD coordinates of the layer data.
            If the click does not intersect the axis-aligned data bounding box,
            None is returned.
        """
        if len(dims_displayed) == 3:
            # create a mask to select the in view dimensions
            dims_displayed = dims_displayed
            dims_displayed_mask = np.zeros_like(position, dtype=bool)
            dims_displayed_mask[dims_displayed] = True
            # create the bounding box in data coordinates
            bbox = self._display_bounding_box(dims_displayed_mask)
            # get the view direction in data coords (only displayed dims)
            if world is True:
                view_dir = np.asarray(self._world_to_data_ray(view_direction))[
                    dims_displayed_mask
                ]
            else:
                view_dir = np.asarray(view_direction)[dims_displayed_mask]
            # Get the clicked point in data coords (only displayed dims)
            if world is True:
                click_pos_data = np.asarray(self.world_to_data(position))[
                    dims_displayed_mask
                ]
            else:
                click_pos_data = np.asarray(position)[dims_displayed_mask]
            # Determine the front and back faces
            front_face_normal, back_face_normal = find_front_back_face(
                click_pos_data, bbox, view_dir
            )
            # Get the locations in the plane where the ray intersects
            if front_face_normal is not None and back_face_normal is not None:
                start_point_disp_dims = (
                    intersect_line_with_axis_aligned_bounding_box_3d(
                        click_pos_data, view_dir, bbox, front_face_normal
                    )
                )
                end_point_disp_dims = (
                    intersect_line_with_axis_aligned_bounding_box_3d(
                        click_pos_data, view_dir, bbox, back_face_normal
                    )
                )
                # add the coordinates for the axes not displayed
                start_point = np.asarray(position)
                start_point[dims_displayed_mask] = start_point_disp_dims
                end_point = np.asarray(position)
                end_point[dims_displayed_mask] = end_point_disp_dims
            else:
                # if the click doesn't intersect the data bounding box,
                # return None
                start_point = None
                end_point = None
            return start_point, end_point
        else:
            return None, None 
    @property
    def _displayed_axes(self):
        displayed_axes = [
            self._dims_displayed[i] for i in self._dims_displayed_order
        ]
        return displayed_axes
    @property
    def _corner_pixels_displayed(self):
        displayed_axes = self._displayed_axes
        corner_pixels_displayed = self.corner_pixels[:, displayed_axes]
        return corner_pixels_displayed
    def _update_draw(
        self, scale_factor, corner_pixels_displayed, shape_threshold
    ):
        """Update canvas scale and corner values on draw.
        For layer multiscale determining if a new resolution level or tile is
        required.
        Parameters
        ----------
        scale_factor : float
            Scale factor going from canvas to world coordinates.
        corner_pixels_displayed : array, shape (2, 2)
            Coordinates of the top-left and bottom-right canvas pixels in
            world coordinates.
        shape_threshold : tuple
            Requested shape of field of view in data coordinates.
        """
        self.scale_factor = scale_factor
        displayed_axes = self._displayed_axes
        # we need to compute all four corners to compute a complete,
        # data-aligned bounding box, because top-left/bottom-right may not
        # remain top-left and bottom-right after transformations.
        all_corners = list(itertools.product(*corner_pixels_displayed.T))
        # Note that we ignore the first transform which is tile2data
        data_corners = (
            self._transforms[1:]
            .simplified.set_slice(displayed_axes)
            .inverse(all_corners)
        )
        # find the maximal data-axis-aligned bounding box containing all four
        # canvas corners
        data_bbox = np.stack(
            [np.min(data_corners, axis=0), np.max(data_corners, axis=0)]
        )
        # round and clip the bounding box values
        data_bbox_int = np.stack(
            [np.floor(data_bbox[0]), np.ceil(data_bbox[1])]
        ).astype(int)
        displayed_extent = self.extent.data[:, displayed_axes]
        data_bbox_clipped = np.clip(
            data_bbox_int, displayed_extent[0], displayed_extent[1]
        )
        if self._ndisplay == 2 and self.multiscale:
            level, scaled_corners = compute_multiscale_level_and_corners(
                data_bbox_clipped,
                shape_threshold,
                self.downsample_factors[:, displayed_axes],
            )
            corners = np.zeros((2, self.ndim))
            corners[:, displayed_axes] = scaled_corners
            corners = corners.astype(int)
            if self.data_level != level or not np.all(
                self.corner_pixels == corners
            ):
                self._data_level = level
                self.corner_pixels = corners
                self.refresh()
        else:
            self.corner_pixels = data_bbox_clipped
[docs]    def get_status(
        self,
        position: np.ndarray,
        *,
        view_direction: Optional[np.ndarray] = None,
        dims_displayed: Optional[List[int]] = None,
        world=False,
    ):
        """
        Status message of the data at a coordinate position.
        Parameters
        ----------
        position : tuple
            Position in either data or world coordinates.
        view_direction : Optional[np.ndarray]
            A unit vector giving the direction of the ray in nD world coordinates.
            The default value is None.
        dims_displayed : Optional[List[int]]
            A list of the dimensions currently being displayed in the viewer.
            The default value is None.
        world : bool
            If True the position is taken to be in world coordinates
            and converted into data coordinates. False by default.
        Returns
        -------
        msg : string
            String containing a message that can be used as a status update.
        """
        value = self.get_value(
            position,
            view_direction=view_direction,
            dims_displayed=dims_displayed,
            world=world,
        )
        return generate_layer_status(self.name, position, value) 
    def _get_tooltip_text(self, position, *, world=False):
        """
        tooltip message of the data at a coordinate position.
        Parameters
        ----------
        position : tuple
            Position in either data or world coordinates.
        world : bool
            If True the position is taken to be in world coordinates
            and converted into data coordinates. False by default.
        Returns
        -------
        msg : string
            String containing a message that can be used as a tooltip.
        """
        return ""
[docs]    def save(self, path: str, plugin: Optional[str] = None) -> List[str]:
        """Save this layer to ``path`` with default (or specified) plugin.
        Parameters
        ----------
        path : str
            A filepath, directory, or URL to open.  Extensions may be used to
            specify output format (provided a plugin is available for the
            requested format).
        plugin : str, optional
            Name of the plugin to use for saving. If ``None`` then all plugins
            corresponding to appropriate hook specification will be looped
            through to find the first one that can save the data.
        Returns
        -------
        list of str
            File paths of any files that were written.
        """
        from ...plugins.io import save_layers
        return save_layers(path, [self], plugin=plugin) 
    def _on_selection(self, selected: bool):
        # This method is a temporary workaround to the fact that the Points
        # layer needs to know when its selection state changes so that it can
        # update the highlight state.  This, along with the events.select and
        # events.deselect emitters, (and the LayerList._on_selection_event
        # method) can be removed once highlighting logic has been removed from
        # the layer model.
        if selected:
            self.events.select()
        else:
            self.events.deselect()
[docs]    @classmethod
    def create(
        cls, data, meta: dict = None, layer_type: Optional[str] = None
    ) -> Layer:
        """Create layer from `data` of type `layer_type`.
        Primarily intended for usage by reader plugin hooks and creating a
        layer from an unwrapped layer data tuple.
        Parameters
        ----------
        data : Any
            Data in a format that is valid for the corresponding `layer_type`.
        meta : dict, optional
            Dict of keyword arguments that will be passed to the corresponding
            layer constructor.  If any keys in `meta` are not valid for the
            corresponding layer type, an exception will be raised.
        layer_type : str
            Type of layer to add. Must be the (case insensitive) name of a
            Layer subclass.  If not provided, the layer is assumed to
            be "image", unless data.dtype is one of (np.int32, np.uint32,
            np.int64, np.uint64), in which case it is assumed to be "labels".
        Raises
        ------
        ValueError
            If ``layer_type`` is not one of the recognized layer types.
        TypeError
            If any keyword arguments in ``meta`` are unexpected for the
            corresponding `add_*` method for this layer_type.
        Examples
        --------
        A typical use case might be to upack a tuple of layer data with a
        specified layer_type.
        >>> data = (
        ...     np.random.random((10, 2)) * 20,
        ...     {'face_color': 'blue'},
        ...     'points',
        ... )
        >>> Layer.create(*data)
        """
        from ... import layers
        from ..image._image_utils import guess_labels
        layer_type = (layer_type or '').lower()
        # assumes that big integer type arrays are likely labels.
        if not layer_type:
            layer_type = guess_labels(data)
        if layer_type not in layers.NAMES:
            raise ValueError(
                f"Unrecognized layer_type: '{layer_type}'. "
                f"Must be one of: {layers.NAMES}."
            )
        Cls = getattr(layers, layer_type.title())
        try:
            return Cls(data, **(meta or {}))
        except Exception as exc:
            if 'unexpected keyword argument' not in str(exc):
                raise exc
            bad_key = str(exc).split('keyword argument ')[-1]
            raise TypeError(
                "_add_layer_from_data received an unexpected keyword "
                f"argument ({bad_key}) for layer type {layer_type}"
            ) from exc